
Computing Logarithms
F. Auger, L. Zhen, B. Feuvrie

IREENA, Université de Nantes, France.

E-mail: {francois.auger, bruno.feuvrie}@univ-nantes.fr, luozhen.lz@126.com

THE BASIC PRINCIPLE

To compute the logarithm of a positive number x, the principle of this method is to find

the mathematical inverse of x, i.e., the number y such that

 x·y = 1. (1)

Taking the logarithm of both sides of Eq. (1) yields

 log(x) + log(y) = 0
or
 log(x) = –log(y). (2)

The number y in Eq. (2) is expanded so that it is much easier to compute log(y) than it

is to compute log(x). Once we compute log(y) we negate that value to obtain log(x).

Based on this simple basic principle (which is of course not an algorithm) an algorithm

can be designed. Our logarithm algorithm is multiplier free and iterative, and therefore

is a little more complicated than this basic principle.

THE ALGORITHM

In our algorithm the value y in Eq. (1) takes the form:

 y = (1 + 2–0)k0 (1 + 2–1)k1 (1 + 2–2)k2 (1 + 2–3)k3 ... (1 + 2–N)kN (3)

where the ki sequence of exponents are integers, defined such that

• x·2k0 is between 0.5 and 1,

• k1 is the highest integer such that x·2k0(1 + 2–1)k1 is less than 1 (which means that

x·2k0(1 + 2–1)(k1+1) is greater than 1,

• k2 is the highest integer such that x·2k0 (1 + 2–1)k1(1 + 2–2)k2 is less than 1 (which

means that x·2k0 (1 + 2–1)k1(1 + 2–2)(k2+1) is greater than 1,

• and so on …

As such, the product x·y becomes

 x·y = x [2k0 (1 + 2–1)k1 (1 + 2–2)k2 (1 + 2–3)k3 ... (1 + 2–N)kN] ≈ 1. (4)

Taking the logarithm, to the base b, of Eq. (4) gives us

logb(x·y) = logb(x) + k0 logb(2) + k1 logb(1 + 2–1) + k2 logb(1 + 2–2)

+ k3 logb(1 + 2–3)k3 ... + kN logb(1 + 2–N) ≈ 0. (5)

which implies

0
log log() (1 2)i

ib b

i N

i
kx −

=

=
≈ − +∑ (6)

 Our final algorithm, then, will compute the series of products given in Eq. (6).

However, while the absolute value of integer k0 can be greater than one, the remaining

k1 through kN integers in Eq. (6) can only be zeros or ones. For example, for x = 5,

k0 = –3 and all the following ki are equal to zero except k1, k4 , k8, k16 , k32 … which are

all equal to 1. This allows us to avoid performing multiplications when computing the

right side of Eq. (6).

 We completely eliminate multiplications by first precomputing the sequence

logb(1 + 2–i), for 0 ≤ i ≤ N, and storing those constants in a lookup table (LUT). If, for

example, k0 = –3 we compute the first term in Eq. (6) by accumulating three of the

–logb(2) constants from the LUT. To that accumulated value, we add the remaining

logb(1 + 2–i) LUT constants based on whether ki is a zero or a one. This way no

multiplications are needed.

The value N in Eq. (6) is user-defined based on the desired precision of our logb(x)

result. The larger N, more terms will be accumulated in Eq. (6), and the more precise

will be the computed logb(x). It can hence be shown that

 2
2 1

N

N +
< x·y ≤ 1,

which shows that for a large N, the product x·y is very close to 1.

COMPUTING THE ki FACTORS

In an iterative implementation of our algorithm, shown in Figure 1, we don't actually compute

the ki factors explicitly. Here's what we do to compute logb(x). Assuming that x is a positive

number, we initialize an accumulator, logx in Figure 1, to zero. Next, if x is greater that one,

we perform binary right shifts until the shifted x is less than one. For each right shift we add

logb(2) to the logx accumulator. If, on the other hand, the original x was less than 0.5 we

perform left shifts until the shifted x is greater than or equal to 0.5. For each left shift we

subtract logb(2) from the logx accumulator. Those additions (or subtractions) of logb(2)

complete the computation of the –k0logb(2) term in Eq. (6).

 Now that the shifted x is between 0.5 and 1, we iteratively subtract, where appropriate (i.e.

when we can add 2–i·x to x without exceeding 1), the remaining LUT logb(1 + 2–i) terms from

the logx accumulator until i reaches N and the accumulated logx reaches the desired accuracy.

(The value N is represented by variable Nbits, the desired number of bits in the logb(x) result, in

Figure 1.)

xnext = x + x h.

No

Yes

Define values for x and Nbits

Initialization

Final logb(x) is
computed, Stop

x > 0 ?

Print error message

Stop

Nox > 1 ?
Yes

xnext = x + x h.

logx = 0

logx = logx + LogTab(0)
x = x/2

Nox < 0.5 ?
Yes

logx = logx – LogTab(0)
x = 2x

Noi > Nbits ?

Noxnext < 1 ?
Yes

h = 0.5
i = 1

x = xnext
logx = logx – LogTab(i)

h = h/2
i = i + 1

Yes

If original x is
greater than
1, this loop is
executed –k0

times

If original x
is less than

0.5, this
loop is

executed k0
times

 The
number of
times this

loop is
executed is
a function of
the original

x, and
increases
with Nbits

FIG. 1 Computational flow diagram of the logarithm algorithm.

	Computing Logarithms

