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THE BASIC PRINCIPLE 

To compute the logarithm of a positive number x, the principle of this method is to find 

the mathematical inverse of x, i.e., the number y such that 

   x·y = 1.              (1) 

Taking the logarithm of both sides of Eq. (1) yields 

  log(x) + log(y) = 0            
or 
  log(x) = –log(y).           (2) 

The number y in Eq. (2) is expanded so that it is much easier to compute log(y) than it 

is to compute log(x). Once we compute log(y) we negate that value to obtain log(x). 

Based on this simple basic principle (which is of course not an algorithm) an algorithm 

can be designed. Our logarithm algorithm is multiplier free and iterative, and therefore 

is a little more complicated than this basic principle. 

THE ALGORITHM 

In our algorithm the value y in Eq. (1) takes the form: 

  y = (1 + 2–0)k0 (1 + 2–1)k1 (1 + 2–2)k2 (1 + 2–3)k3 ... (1 + 2–N)kN  (3) 

where the ki sequence of exponents are integers, defined such that 

• x·2k0 is between 0.5 and 1, 

• k1 is the highest integer such that x·2k0(1 + 2–1)k1 is less than 1 (which means that 

x·2k0(1 + 2–1)(k1+1) is greater than 1, 



• k2 is the highest integer such that x·2k0 (1 + 2–1)k1(1 + 2–2)k2 is less than 1 (which 

means that x·2k0 (1 + 2–1)k1(1 + 2–2)(k2+1) is greater than 1, 

• and so on … 

As such, the product x·y becomes 

  x·y = x [2k0 (1 + 2–1)k1 (1 + 2–2)k2 (1 + 2–3)k3 ... (1 + 2–N)kN ] ≈ 1. (4) 

Taking the logarithm, to the base b, of Eq. (4) gives us 

logb(x·y) = logb(x) + k0 logb(2) + k1 logb(1 + 2–1) + k2 logb(1 + 2–2)  

+ k3 logb(1 + 2–3)k3 ... + kN logb(1 + 2–N) ≈ 0.    (5) 

which implies 
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 Our final algorithm, then, will compute the series of products given in Eq. (6). 

However, while the absolute value of integer k0 can be greater than one, the remaining 

k1 through kN integers in Eq. (6) can only be zeros or ones. For example, for x = 5, 

k0 = –3 and all the following ki are equal to zero except k1, k4 , k8, k16 , k32 … which are 

all equal to 1. This allows us to avoid performing multiplications when computing the 

right side of Eq. (6). 

 We completely eliminate multiplications by first precomputing the sequence 

logb(1 + 2–i), for 0 ≤ i ≤ N, and storing those constants in a lookup table (LUT). If, for 

example, k0 = –3 we compute the first term in Eq. (6) by accumulating three of the 

–logb(2) constants from the LUT. To that accumulated value, we add the remaining 

logb(1 + 2–i) LUT constants based on whether ki is a zero or a one. This way no 

multiplications are needed. 

The value N in Eq. (6) is user-defined based on the desired precision of our logb(x) 

result. The larger N, more terms will be accumulated in Eq. (6), and the more precise 

will be the computed logb(x). It can hence be shown that 
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which shows that for a large N, the product x·y is very close to 1. 

COMPUTING THE ki FACTORS 

In an iterative implementation of our algorithm, shown in Figure 1, we don't actually compute 

the ki factors explicitly. Here's what we do to compute logb(x). Assuming that x is a positive 

number, we initialize an accumulator, logx in Figure 1, to zero. Next, if x is greater that one, 

we perform binary right shifts until the shifted x is less than one. For each right shift we add 

logb(2) to the logx accumulator. If, on the other hand, the original x was less than 0.5 we 

perform left shifts until the shifted x is greater than or equal to 0.5. For each left shift we 

subtract logb(2) from the logx accumulator. Those additions (or subtractions) of logb(2) 

complete the computation of the –k0logb(2) term in Eq. (6).  

 Now that the shifted x is between 0.5 and 1, we iteratively subtract, where appropriate (i.e. 

when we can add 2–i·x to x without exceeding 1), the remaining LUT logb(1 + 2–i) terms from 

the logx accumulator until i reaches N and the accumulated logx reaches the desired accuracy. 

(The value N is represented by variable Nbits, the desired number of bits in the logb(x) result, in 

Figure 1.)  
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FIG. 1  Computational flow diagram of the logarithm algorithm. 
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