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Part 1: Optimal adaptive signal 

processing fundamentals



Problem Setting

Optimal Signal Processing seeks to find optimal models for time 

series. 

The linear model is well understood and widely applied. Optimal 

linear filtering is regression in functional spaces, where the user 

controls the size of the space by choosing the model order. 

Problems are fourfold:

In many important applications data arrives in real time, one sample 

at a time, so on-line learning methods are necessary. 

Optimal algorithms must obey physical constrains, FLOPS, memory, 

response time, battery power. 

Application conditions may be non stationary, i.e. the model must 

be continuously adapting to track changes. 

Unclear how to go beyond the linear model. 

Although the optimal problem is the same as in machine learning, 

constraints make the computational problem different. 



Machine Learning

Assumption: Examples are drawn independently from an 

unknown probability distribution P(u, y) that represents the 

rules of Nature.

Expected Risk:

We would like f∗ that minimizes R(f) among all functions.

But we use a mapper class F and in general 

The best we can have is           that minimizes R(f).

P(u, y) is also unknown by definition.

Empirical Risk: 

Instead we compute            that minimizes Rn(f).

Vapnik-Chervonenkis theory tells us when this can work, but 

the optimization is computationally costly.

Exact estimation of fN is done thru optimization. 
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Machine Learning Strategy
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Machine Learning Strategy

The optimality conditions in learning and optimization theories 

are mathematically driven: 

Learning theory favors cost functions that ensure a fast estimation 

rate when the number of examples increases (small estimation error 

bound).

Optimization theory favors superlinear algorithms (small 

approximation error bound)

What about the computational cost of these optimal solutions, in 

particular when the data sets are huge? Algorithmic complexity 

should be as close as possible to O(N).

Change the design strategy: Since these solutions are never 

optimal (non-reachable set of functions, empirical risk), goal 

should be to get quickly to the neighborhood of the optimal 

solution to save computation. 



Learning Strategy in Biology

In Biology optimality is stated in relative terms: the best possible 

response within a fixed time and with the available (finite) 

resources. 

Biological learning shares both constraints of small and large 

learning theory problems, because it is limited by the number of 

samples and also by the computation time.

Design strategies for optimal signal processing are similar to the 

biological framework than to the machine learning framework.

What matters is “how much the error decreases per sample for a 

fixed memory/ flop cost”

It is therefore no surprise that the most successful algorithm in 

adaptive signal processing is the least mean square algorithm 

(LMS) which never reaches the optimal solution, but is O(L) and 

tracks continuously the optimal solution! 



Extensions to Nonlinear Systems

Many algorithms exist to solve the on-line linear regression
problem:

LMS stochastic gradient descent

LMS-Newton handles eigenvalue spread, but is expensive

Recursive Least Squares (RLS) tracks the optimal solution with the 
available data.  

Nonlinear solutions either append nonlinearities to linear filters 
(not optimal) or require the availability of all data (Volterra, neural 
networks) and are not practical. 

Kernel based methods offers a very interesting alternative to  
neural networks. 

Provided that the adaptation algorithm is written as an inner product, 
one can take advantage of the  “kernel trick”. 

Nonlinear filters in the input space are obtained. 

The primary advantage of doing gradient descent learning in RKHS 
is that the performance surface is still quadratic, so there are no 
local minima, while the filter now is nonlinear in the input space.  



Adaptive Filtering Fundamentals
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On-Line Learning for Linear Filters

The current estimate      is computed in 

terms of the previous estimate,         , as: 

ei is the model prediction error arising from the use of wi-1 and Gi is a 
Gain term

iw

1i i i iw w G e 
1iw 

Transversal filter

Adaptive weight-

control mechanism

iwiu ( )y i



( )d i

-

+

( )e i

Notation:

wi weight estimate at time i 

(vector) (dim = l)

ui input at time i (vector)

e(i) estimation error at time i 

(scalar)

d(i) desired response at time i 

(scalar)

ei estimation error at iteration i 

(vector)

di desired response at iteration 

i (vector)

Gi capital letter matrix



On-Line Learning for Linear Filters
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On-Line Learning for Linear Filters

Gradient descent learning for linear mappers has also great 

properties

It accepts an unbiased sample by sample estimator that is easy to 

compute (O(L)), leading to the famous LMS algorithm.

The LMS is a robust estimator (        ) algorithm. 

For small stepsizes, the visited points during adaptation always 

belong to the input data manifold (dimension L), since algorithm 

always move in the opposite direction of the gradient. 
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On-Line Learning for Non-Linear Filters?

Can we generalize                           to nonlinear models?

and create incrementally the nonlinear mapping?

Ty w u ( )y f u

Universal function 

approximator

Adaptive weight-

control mechanism
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Part 2: Least-mean-squares in kernel 

space



Non-Linear Methods - Traditional
(Fixed topologies)

Hammerstein and Wiener models

An explicit nonlinearity followed (preceded) by a linear filter

Nonlinearity is problem dependent

Do not possess universal approximation property

Multi-layer perceptrons (MLPs) with back-propagation

Non-convex optimization

Local minima

Least-mean-square for radial basis function (RBF) networks 

Non-convex optimization for adjustment of centers

Local minima

Volterra models, Recurrent Networks, etc



Non-linear Methods with kernels

Universal approximation property (kernel dependent)

Convex optimization (no local minima)

Still easy to compute (kernel trick)

But require regularization

Sequential (On-line) Learning with Kernels

(Platt 1991) Resource-allocating networks

Heuristic

No convergence and well-posedness analysis

(Frieb 1999) Kernel adaline

Formulated in a batch mode

well-posedness not guaranteed

(Kivinen 2004) Regularized kernel LMS

with explicit regularization

Solution is usually biased

(Engel 2004) Kernel Recursive Least-Squares 

(Vaerenbergh 2006) Sliding-window kernel recursive least-squares



Neural Networks versus Kernel Filters

ANNs Kernel filters

Universal Approximators YES YES

Convex Optimization NO YES

Model Topology grows with data NO YES

Require Explicit Regularization NO YES/NO (KLMS)

Online Learning YES YES

Computational Complexity LOW MEDIUM

ANNs are semi-parametric, nonlinear approximators

Kernel filters are non-parametric, nonlinear approximators



Kernel Methods
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Kernel filters operate in a very special Hilbert space of 

functions called a Reproducing Kernel Hilbert Space (RKHS).

A RKHS is an Hilbert space where all function evaluations are 

finite

Operating with functions seems complicated and it is! But it 

becomes much easier in RKHS if we restrict the computation 

to inner products. 

Most linear algorithms can be expressed as inner products. 

Remember the FIR



Kernel methods

Moore-Aronszajn theorem

Every symmetric positive definite function of two real variables has 

a unique Reproducing Kernel Hilbert Space (RKHS).

Mercer‟s theorem

Let K(x,y) be symmetric positive definite. The kernel can be 

expanded in the series

Construct the transform as

Inner product
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Kernel methods

Mate L., Hilbert Space Methods in Science and Engineering, A. Hildger, 1989

Berlinet A., and Thomas-Agnan C., “Reproducing kernel Hilbert Spaces in probaability and Statistics, Kluwer 2004



Basic idea of on-line kernel filtering

Transform data into a high dimensional feature space 

Construct a linear model in the feature space F

Adapt iteratively parameters with gradient information 

Compute the output

Universal approximation theorem

For the Gaussian kernel and a sufficient large mi, fi(u) can 

approximate any continuous input-output mapping arbitrarily close in 

the Lp norm.
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Growing network structure
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Kernel Least-Mean-Square (KLMS)

Least-mean-square

Transform data into a high dimensional feature space F

RBF Centers are the samples, and Weights are the errors!
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Kernel Least-Mean-Square (KLMS)
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Free Parameters in KLMS 
Step size

Traditional wisdom in LMS still applies here.

where       is the Gram matrix, and N its dimensionality.

For translation invariant kernels, (u(j),u(j))=g0, is a 

constant independent of the data. 

The Misadjustment is therefore 
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Free Parameters in KLMS 
Rule of Thumb for h

Although KLMS is not kernel density estimation, 

these rules of thumb still provide a starting point. 

Silverman‟s rule can be applied 

where s is the input data s.d., R is the interquartile, N 

is the number of samples and L is the dimension.

Alternatively: take a look at the dynamic range of the 

data, assume it uniformly distributed and select h to 

put 10 samples in 3 s

  )5/(134.1/,min06.1 LNRh  s



Free Parameters in KLMS

Kernel Design

The Kernel defines the inner product in RKHS

Any positive definite function (Gaussian, 

polynomial, Laplacian, etc.), but we should choose 

a kernel that yields a class of functions that allows 

universal approximation. 

A strictly positive definite function is preferred 

because it will yield universal mappers (Gaussian, 

Laplacian). 

See Sriperumbudur et al, On the Relation Between Universality, Characteristic Kernels and RKHS Embedding of

Measures, AISTATS 2010



Free Parameters in KLMS 
Kernel Design

Estimate and minimize the generalization error, e.g. 

cross validation

Establish and minimize a generalization error upper 

bound, e.g. VC dimension

Estimate and maximize the posterior probability of 

the model given the data using Bayesian inference



Free Parameters in KLMS 
Bayesian model selection

The posterior probability of a Model H (kernel and 

parameters q) given the data is 

where  d is the desired output and U is the input vector.

This is hardly ever done for the kernel function, but it 

can be applied to q and leads to Bayesian principles 

to adapt the kernel parameters. 
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Free Parameters in KLMS 
Maximal marginal likelihood
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Sparsification

Filter size increases linearly with samples! 

If RKHS is compact and the environment stationary, 

we see that there is no need to keep increasing the 

filter size.

Issue is that we would like to implement it on-line!  

Two ways to cope with growth: 

Novelty Criterion

Approximate Linear Dependency

First is very simple and intuitive to implement.



Sparsification

Novelty Criterion 

Present dictionary is                    . When a new data 

pair arrives (u(i+1),d(i+1)).

First compute the distance to the present dictionary

If smaller than threshold d1 do not create new center

Otherwise see if the prediction error is larger than d2

to augment the dictionary. 

d1 ~ 0.1 kernel size and d2 ~ sqrt of MSE 
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Sparsification

Approximate Linear Dependency

Engel proposed to estimate the distance to the linear 

span of the centers, i.e. compute 

Which can be estimated by 

Only increase dictionary if dis larger than threshold

Complexity is O(m2)

Easy to estimate in KRLS (dis~r(i+1))

Can simplify the sum to the nearest center, and it 

defaults to NC 
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KLMS- Mackey-Glass Prediction
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Regularization worsens performance



Performance Growth tradeoff

d1=0.1, d2=0.05

=0.1, a=1



KLMS- Nonlinear channel equalization 
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Nonlinear channel equalization

Algorithms Linear LMS (η=0.005)
KLMS (η=0.1)

(NO REGULARIZATION)

RN

(REGULARIZED λ=1)

BER (σ = .1) 0.162±0.014 0.020±0.012 0.008±0.001

BER (σ = .4) 0.177±0.012 0.058±0.008 0.046±0.003

BER (σ = .8) 0.218±0.012 0.130±0.010 0.118±0.004

Algorithms Linear LMS KLMS RN 

Computation (training) O(l) O(i) O(i3)

Memory (training) O(l) O(i) O(i2)

Computation (test) O(l) O(i) O(i)

Memory (test) O(l) O(i) O(i)

2( , ) exp( 0.1 || || )i j i ju u u u   

Why don‟t we need to explicitly regularize the KLMS?



Self-regularization property of KLMS

Assume the data model                                 then for any 
unknown vector       the following inequality holds

As long as the matrix                          is positive definite. So
H∞ robustness

And         is upper bounded

The solution norm of KLMS is always upper bounded i.e. 
the algorithm is well posed in the sense of Hadamard. 
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Liu W., Pokarel P., Principe J., “The Kernel LMS Algorithm”, IEEE Trans. Signal Processing, Vol 56, # 2, 543 – 554, 2008.
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Regularization Techniques

Learning from finite data is ill-posed and a priori 

information to enforce Smoothness is needed.

The key is to constrain the solution norm

In Least Squares constraining the norm yields

In Bayesian modeling, the norm is the prior. (Gaussian process)

In statistical learning theory, the norm is associated with the 

model capacity and hence the confidence of uniform 

convergence! (VC dimension and structural risk minimization)
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Tikhonov Regularization
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In numerical analysis the method is to constrain the condition 

number of the solution matrix (or its eigenvalues) 

The singular value decomposition of F can be written

The pseudo inverse to estimate  in                                is
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Tikhonov and KLMS

For finite data and using small stepsize theory:

Denote 

Assume the correlation matrix is singular, and

From LMS it is known that 

Define                                          so

and    

2 2 2min min

0[| ( ) | ] (1 ) (| ( ) | )
2 2

i

i n

n n

J J
E n n

 
  

 
   

 

1 1... ... 0k k m        

Liu W., Pokarel P., Principe J., “The Kernel LMS Algorithm”, IEEE Trans. Signal Processing, Vol 56, # 2, 543 – 554, 2008.

T

xR P P 
( ) m

i iu R  

1

1 N
T

i i

i

R
N

 


 

)0()1()]([ n

i

nn iE  

 


m

n nn Pii
1

0 )()( 

jj

M

j

i

jjj

M

j

i

jiE PP
0

11

0 ])1(1[)0()1()]([  


 0)0(0)0( jj  

2
0

1

202
)()]([  



M

j

jiE max/1  



Tikhonov and KLMS

In the worst case, substitute the optimal weight by the pseudo inverse 

Regularization function for finite N in KLMS 

No regularization

Tikhonov

PCA
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The stepsize and N control the reg-function in 

KLMS. 

Liu W., Principe J. The Well-posedness Analysis of the Kernel Adaline, Proc WCCI, Hong-Kong, 2008

dQP
T

r

i

r

i ssdiagiE ]0....0,))1(1(,...,))1(1[()]([ 11

11

  



The minimum norm initialization for KLMS

The initialization               gives the minimum possible 

norm solution.
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KLMS and the Data Space

KLMS search is insensitive to the 0-eigenvalue directions

So if            ,                             and 

The 0-eigenvalue directions do not affect the MSE
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KLMS only finds solutions on the data subspace! It does 

not care about the null space!

Liu W., Pokarel P., Principe J., “The Kernel LMS Algorithm”, IEEE Trans. Signal Processing, Vol 56, # 2, 543 – 554, 2008.
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Energy Conservation Relation

Energy conservation in RKHS

Upper bound on step size for mean square convergence

Steady-state mean square performance

The fundamental energy conservation relation holds in RKHS!  

Chen B., Zhao S., Zhu P., Principe J. Mean Square Convergence Analysis of the Kernel Least Mean Square Algorithm, 

submitted to IEEE Trans. Signal Processing

   

22
2 2 ( )( )

( ) ( 1)
( ), ( ) ( ), ( )

pa
e ie i

i i
i i i i 

    
u u u u

2
*

2
* 2

2

v

E

E


s

 
  

  
  





2
2lim ( )

2

v
a

i
E e i

s


    

0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

stepsize 

E
M

S
E

 

 

simulation

theory



Effects of Kernel Size
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Kernel size affects the convergence speed! (How to choose a 
suitable kernel size is still an open problem)

However, it does not affect the final misadjustment! (universal 
approximation with infinite samples) 



Part 3: Affine projection algorithms in 

kernel space



The big picture for gradient based learning

APA
Newton 

APA

Leaky 

APA

LMS
Normalize

d LMS

Leaky 

LMS

K=
1

K=
1

K=
1

Adaline RLS
K=

i

K=
i

Extended 

RLS

weighted 

RLS

Frieb , 1999

Kivinen

2004

Engel, 2004
We have kernelized 

versions of all

The EXT RLS is a

model with states

Liu W., Principe J., “Kernel Affine Projection Algorithms”, European J. of Signal Processing, ID 784292, 2008.



Affine projection algorithms

Solve                                   which yields  

There are several ways to approximate this solution iteratively 
using 

Gradient Descent Method

Newton‟s recursion 

LMS uses a stochastic gradient that approximates 

Affine projection algorithms (APA) utilize better approximations

Therefore APA is a family of online gradient based algorithms of 
intermediate complexity between the LMS and RLS. 
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Affine projection algorithms

APA are of the general form 

Gradient

Newton

Notice that 

So

T

LxK idKidiiKii )](),...,1([)()](),...,1([)(  duuU

)()(
1

ˆ)()(
1ˆ ii

K
ii

K

T
dUrUUR duu 

)]1()()()()1()()0(  iiiiii T
wU-[dUwww 

)]1()()()[())()(()1()( 1   iiiiiiii TT
wU-dUIUUww 

11 ))()()(()())()((   IUUUUIUU  iiiiii TT

)]1()()([])()()[()1()( 1   iiiiiiii TT
wU-dIUUUww 



Affine projection algorithms

If a regularized cost function is preferred 

The gradient method becomes

Newton

Or
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Kernel Affine Projection Algorithms

KAPA 1,2 use the least squares cost, while KAPA 3,4 are regularized

KAPA 1,3 use gradient descent and  KAPA 2,4 use Newton update

Note that KAPA 4 does not require the calculation of the error by 

rewriting the error with the matrix inversion lemma and using the 

kernel trick

Note that one does not have access to the weights, so need recursion 

as in KLMS. 

Care must be taken to minimize computations. 
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Error reusing to save computation

For KAPA-1, KAPA-2, and KAPA-3

To calculate K errors is expensive (kernel evaluations)  

K times computations? No, save previous errors and use them
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KAPA-4: Smoothed Newton‟s method. 

There is no need to compute the error

The topology can still be put in the same RBF framework. 

Efficient ways to compute the inverse are necessary. The sliding 

window computation yields a complexity of O(K2)

KAPA-4
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How to invert the K-by-K matrix                            and avoid O(K3)?

KAPA-4
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Sliding window Gram matrix inversion
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Relations to other methods



Recursive Least-Squares

The RLS algorithm estimates a weight vector w(i-1) by 
minimizing the cost function

The solution becomes 

And can be recursively computed as

Where                                    . Start with zero weights and 

21

1

)()(





i

j

T

w
jjdnim wu

)1()1())1()1(()1( 1   iiiii T
dUUUw

)1()()()(

)]()()()1([)()(/)()1()(

)()()1()()()1()(1)(







iiidie

iriiiiiriii

ieiiiiiiir

T

T

T

wu

kkPPuPk

kwwuPu

)]1()()([
)()1()(1

)()1(
)1()( 




 iiid

iii

ii
ii T

T
wu

uPu

uP
ww

1))()(()(  Tiii UUP I1)0(  P



Kernel Recursive Least-Squares

The KRLS algorithm estimates a weight function w(i) by minimizing 

The solution in RKHS becomes 

can be computed recursively as 

From this we can also recursively compute Q(i) 

And compose back a(i) recursively  

with initial conditions
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KRLS
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Engel Y., Mannor S., Meir R. “The kernel recursive least square algorithm”, IEEE Trans. Signal

Processing, 52 (8), 2275-2285, 2004.



KRLS
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Regularization

The well-posedness discussion for the KLMS hold for 

any other gradient decent methods like KAPA-1 and 

KAPA-3

If Newton method is used, additional regularization is 

needed to invert the Hessian matrix like in KAPA-2 

and normalized KLMS

Recursive least squares embed the regularization in 

the initialization



Computation complexity

Prediction of Mackey-Glass

L=10

K=10

K=50 SW KRLS



Simulation 1: noise cancellation
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Simulation 1: Noise Cancellation
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Simulation 1:Noise Cancellation
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Simulation-2: nonlinear channel equalization
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Simulation-2: nonlinear channel equalization

Nonlinearity changed (inverted signs)



Gaussian Processes 

A Gaussian process is a stochastic process (a family of random 
variables) where all the pairwise correlations are Gaussian 
distributed. The family however is not necessarily over time (as in 
time series). 

For instance in regression, if we denote the output of a learning 
system by y(i) given the input u(i) for every i, the conditional 
probability

Where s is the observation Gaussian noise and G(i) is the Gram 
matrix

and  is the covariance function (symmetric and positive definite). Just 
like the Gaussian kernel used in KLMS.  

Gaussian processes can be used with advantage in Bayesian 
inference. 
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Gaussian Processes and Recursive 

Least-Squares

The standard linear regression model with Gaussian noise is 

where the noise is IID, zero mean and variance 

The likelihood of the observations given the input and weight vector 
is 

To compute the posterior over the weight vector we need to specify 
the prior, here a Gaussian and use Bayes rule 

Since the denominator is a constant, the posterior is shaped by the 
numerator, and it is approximately given by

with mean                                                  and covariance

Therefore, RLS computes the posterior in a Gaussian process one 
sample at a time. 
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KRLS and Nonlinear Regression 

It easy to demonstrate that KRLS does in fact estimate online 
nonlinear regression with a Gaussian noise model i.e. 

where the noise is IID, zero mean and variance 

By a similar derivation we can say that the mean and variance are

Although the weight function is not accessible we can create 
predictions at any point in the space by the KRLS as 

with variance 
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Part 4: Extended Recursive least 

squares in kernel space



Extended Recursive Least-Squares

STATE model

Start with

Special cases

• Tracking model (F is a time varying scalar)

• Exponentially weighted RLS

• standard RLS
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The recursive update equations

Notice that

If we have transformed data, how to calculate                          for any k, i, j?

Recursive equations
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Theorem 1:

where      is a scalar,                           and      is a jxj matrix, for all j.

Proof: 

New Extended Recursive Least-squares
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By mathematical 

induction!

Liu W., Principe J., “Extended Recursive Least Squares in RKHS”, in Proc. 1st Workshop on Cognitive Signal Processing, Santorini, Greece, 2008.



Theorem 2:

where                             and        is a        vector, for all j.

Proof: 

New Extended Recursive Least-squares
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induction again!



Extended RLS       New Equations         
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An important theorem

Assume a general 

nonlinear state-space 

model
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Initialize 

Extended Kernel Recursive Least-squares
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Ex-KRLS
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Simulation-3: Lorenz time series 

prediction



Simulation-3: Lorenz time series 

prediction (10 steps)



Simulation 4: Rayleigh channel tracking

5 tap Rayleigh multi-

path fading channel
tanhst

rt
+

Noise

fD=100Hz, t=8x10-5s         s=0.005

1,000

symbols



Rayleigh channel tracking

Algorithms
MSE (dB) (noise variance 

0.001 and fD = 50 Hz )

MSE (dB) (noise 

variance 0.01 and fD = 

200 Hz )

ε-NLMS -13.51 -9.39

RLS -14.25 -9.55

Extended RLS -14.26 -10.01

Kernel RLS -20.36 -12.74

Kernel extended RLS -20.69 -13.85

2( , ) exp( 0.1 || || )i j i ju u u u   



Computation complexity

Algorithms
Linear 

LMS
KLMS KAPA ex-KRLS 

Computation (training) O(l) O(i) O(i+K2) O(i2)

Memory (training) O(l) O(i) O(i+K) O(i2)

Computation (test) O(l) O(i) O(i) O(i)

Memory (test) O(l) O(i) O(i) O(i)

At time or iteration i



Part 5: Active learning in kernel 

adaptive filtering



Active data selection

Why?
Kernel trick may seem a “free lunch”!

The price we pay is memory and pointwise evaluations of 
the function.

Generalization (Occam‟s razor)

But remember we are working on an on-line scenario, 
so most of the methods out there need to be modified. 



Active data selection

The goal is to build a constant length (fixed budget) 
filter in RKHS. There are two complementary 
methods of achieving this goal:

Discard unimportant centers (pruning)

Accept only some of the new centers (sparsification)

Apart from heuristics, in either case a methodology to 
evaluate the importance of the centers for the overall 
nonlinear function approximation is needed.

Another requirement is that this evaluation should be 
no more expensive computationally than the filter 
adaptation.    



Previous Approaches – Sparsification

Novelty condition (Platt, 1991)
• Compute the distance to the current dictionary

• If it is less than a threshold d1 discard

• If the prediction error 

• Is larger than another threshold d2 include new center. 

Approximate linear dependency (Engel, 2004)
• If the new input is a linear combination of the previous 

centers discard

which is the Schur Complement of Gram matrix and fits KAPA 2 

and 4 very well. Problem is computational complexity
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Previous Approaches – Pruning

Sliding Window (Vaerenbergh, 2010)

Impose mi<B in 

Create the Gram matrix of size B+1 recursively from size B

Downsize: reorder centers and include last (see KAPA2)  

See also the Forgetron and the Projectron that provide 

error bounds for the approximation. 
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O. Dekel, S. Shalev-Shwartz, and Y. Singer, “The Forgetron: A kernel-based perceptron on a fixed budget,” in Advances

in Neural Information Processing Systems 18. Cambridge, MA: MIT Press, 2006, pp. 1342–1372.

F. Orabona, J. Keshet, and B. Caputo, “Bounded kernel-based online learning,” Journal of Machine Learning Research,

vol. 10, pp. 2643–2666, 2009.



Problem statement

The learning system

Already processed (your dictionary) 

A new data pair 

How much new information it contains?

Is this the right question?

Or

How much information it contains with respect to the 

learning system ?
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Information measure

Hartley and Shannon‟s definition of information
How much information it contains?

Learning is unlike digital communications:

The machine never knows the joint distribution!

When the same message is presented to a learning 
system information (the degree of uncertainty) 
changes because the system learned with the first 
presentation! 

Need to bring back MEANING into information theory!
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Surprise as an information measure

Learning is very much like an experiment that we do 

in the laboratory. 

Fedorov (1972) proposed to measure the importance 

of an experiment as the Kulback Leibler distance 

between the prior (the hypothesis we have) and the 

posterior (the results after measurement).

Mackay (1992) formulated this concept under a 

Bayesian approach and it has become one of the key 

concepts in active learning. 



Surprise as an information measure
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Shannon versus Surprise

Shannon 

(absolute 

information) 

Surprise 

(conditional 

information)

Objective Subjective

Receptor

independent

Receptor 

dependent (on time 

and agent)

Message is 

meaningless

Message has 

meaning for the 

agent



Evaluation of conditional information 

(surprise)

Gaussian process theory

where
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Interpretation of conditional information 

(surprise)

Prediction error
Large error  large conditional information

Prediction variance
Small error, large variance  large CI

Large error, small variance  large CI (abnormal)

Input distribution
Rare occurrence  large CI
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Input distribution

Memoryless assumption

Memoryless uniform assumption
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Unknown desired signal

Average CI over the posterior distribution of the 

output

Memoryless uniform assumption

This is equivalent to approximate linear dependency!
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Redundant, abnormal and learnable

Still need to find a systematic way to select these 

thresholds which are hyperparameters. 
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Active online GP regression (AOGR)

Compute conditional information

If redundant

Throw away

If abnormal

Throw away (outlier examples)

Controlled gradient descent (non-stationary)

If learnable

Kernel recursive least squares (stationary)

Extended KRLS (non-stationary)



Simulation-5: nonlinear regression—learning 

curve



Simulation-5: nonlinear regression—

redundancy removal

T1 is wrong, should be T2



Simulation-5: nonlinear regression–

most surprising data



Simulation-5: nonlinear regression



Simulation-5: nonlinear regression—

abnormality detection (15 outliers)

AOGR=KRLS



Simulation-6: Mackey-Glass time series 

prediction

AOGR=KRLS



Simulation-7: CO2 concentration forecasting



Quantized Kernel Least Mean Square

A common drawback of sparsification methods: the 
redundant input data are purely discarded!

Actually the redundant data are very useful and can 
be, for example, utilized to update the coefficients of 
the current network, although they are not so 
important for structure update (adding a new center). 

Quantization approach: the input space is quantized, if 
the current quantized input has already been assigned 
a center, we don‟t need to add a new, but update the 
coefficient of that center with the new information!

Intuitively, the coefficient update can enhance the 
utilization efficiency of that center, and hence may 
yield better accuracy and a more compact network.

Chen B., Zhao S., Zhu P., Principe J. Quantized Kernel Least Mean Square Algorithm, submitted to IEEE Trans. Neural 

Networks



Quantized Kernel Least Mean Square

Quantization in Input Space

Quantization in RKHS

Using the quantization method to

compress the input (or feature) space 

and hence to compact the RBF

structure of the kernel adaptive filter
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Quantized Kernel Least Mean Square

The key problem is the vector quantization (VQ):     

Information Theory? Information Bottleneck? ……

Most of the existing VQ algorithms, however, are not 

suitable for online implementation because the codebook 

must be supplied in advance (which is usually trained on 

an offline data set), and the computational burden is 

rather heavy. 

A simple online VQ method:
1. Compute the distance between u(i) and C(i-1)

: 

2. If                                     keep the codebook unchanged, and quantize u(i) into 

the closest code-vector by 

3. Otherwise, update the codebook:                           , and quantize u(i) as itself           
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Quantized Kernel Least Mean Square

Quantized Energy Conservation Relation

A Sufficient Condition for Mean Square Convergence 

Steady-state Mean Square Performance
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Quantized Kernel Least Mean Square

Static Function Estimation
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Quantized Kernel Least Mean Square

Short Term Lorenz Time Series Prediction
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Redefinition of On-line Kernel Learning

Notice how problem constraints affected the form of the 

learning algorithms. 

On-line Learning: A process by which the free 

parameters and the topology of a „learning system‟ are 

adapted through a process of stimulation by the 

environment in which the system is embedded.

Error-correction learning + memory-based learning

What an interesting (biological plausible?) combination.



Impacts on Machine Learning

KAPA algorithms can be very useful in large scale 

learning problems.

Just sample randomly the data from the data base and 

apply on-line learning algorithms

There is an extra optimization error associated with 

these methods, but they can be easily fit to the machine 

contraints (memory, FLOPS) or the processing time 

constraints (best solution in x seconds).   



Information Theoretic Learning (ITL) 

This class of algorithms can 

be extended to ITL cost

functions and also beyond 

Regression (classification,

Clustering, ICA, etc). See 

IEEE

SP MAGAZINE, Nov 2006

Or ITL resource 

www.cnel.ufl.edu


