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Problem Setting

* Optimal Signal Processing seeks to find optimal models for time
series.

* The linear model is well understood and widely applied. Optimal
linear filtering is regression in functional spaces, where the user
controls the size of the space by choosing the model order.

* Problems are fourfold:

+ In many important applications data arrives in real time, one sample
at a time, so on-line learning methods are necessary.

+ Optimal algorithms must obey physical constrains, FLOPS, memory,
response time, battery power.

+ Application conditions may be non stationary, i.e. the model must
be continuously adapting to track changes.

+ Unclear how to go beyond the linear model.

* Although the optimal problem is the same as in machine learning,
constraints make the computational problem different.




Machine Learning

*  Assumption: Examples are drawn independently from an
unknown probability distribution P(u, y) that represents the
rules of Nature.

x Expected Risk:  R(f)=[L(f(u),y)dP(u.y)

#* We would like f* that minimizes R(f) among all functions.
% But we use a mapper class F and in general f~ ¢ F

% The best we can have is f¢ < F that minimizes R(f).

#* P(u,y) Is also unknown by definition.

% Empirical Risk: Ru(f)=1/N> L(f(u).y)

* Instead we compute fy € F that minimizes R, (f).

* Vapnik-Chervonenkis theory tells us when this can work, but
the optimization is computationally costly.

* Exact estimation of fy is done thru optimization.




Machine Learning Strategy

s« The errors in this process are

R(fy)=R(f)=R(fo)=R(f)+ Approximation Error
+R(fy)=R(f7) Estimation Error

# But the exact fy is hard to obtain normally, and since we have
already two errors, why not approximate (the optimization error)

R(fy)-R(fy)=p

Provided it is computationally simpler to find? (Leon Bottou)
% S0 the problem is to find F, N and p for each problem



Machine Learning Strategy

il
o

vl e’
b

il e’
b

The optimality conditions in learning and optimization theories
are mathematically driven:
+ Learning theory favors cost functions that ensure a fast estimation

rate when the number of examples increases (small estimation error
bound).

+ Optimization theory favors superlinear algorithms (small
approximation error bound)
What about the computational cost of these optimal solutions, In
particular when the data sets are huge? Algorithmic complexity
should be as close as possible to O(N).

Change the design strategy: Since these solutions are never
optimal (non-reachable set of functions, empirical risk), goal
should be to get quickly to the neighborhood of the optimal
solution to save computation.



Learning Strategy in Biology

In Biology optimality is stated in relative terms: the best possible
response within a fixed time and with the available (finite)
resources.

Biological learning shares both constraints of small and large
learning theory problems, because it is limited by the number of
samples and also by the computation time.

Design strategies for optimal signal processing are similar to the
biological framework than to the machine learning framework.

What matters is “how much the error decreases per sample for a
fixed memory/ flop cost”

It is therefore no surprise that the most successful algorithm in
adaptive signal processing is the least mean square algorithm
(LMS) which never reaches the optimal solution, but is O(L) and
tracks continuously the optimal solution!
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Extensions to Nonlinear Systems
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Many algorithms exist to solve the on-line linear regression
problem:

+ LMS stochastic gradient descent
+ LMS-Newton handles eigenvalue spread, but is expensive

+ Recursive Least Squares (RLS) tracks the optimal solution with the
available data.

Nonlinear solutions either append nonlinearities to linear filters

(not optimal) or require the availability of all data (Volterra, neural
networks) and are not practical.

Kernel based methods offers a very interesting alternative to
neural networks.

+ Provided that the adaptation algorithm is written as an inner product,
one can take advantage of the “kernel trick”.

+ Nonlinear filters in the input space are obtained.

+ The primary advantage of doing gradient descent learning in RKHS
Is that the performance surface is still guadratic, so there are no
local minima, while the filter now is nonlinear in the input space.



Adaptive Filtering Fundamentals

s Adaptive Filter Framework
+ Filtering is regression in functional spaces (time series) min,, /(e(n),w)

flu,w) = Z w;u(n — i)

Data d(n)
Va
Data u(n) | Adapfive | Outpu
1 svdtem g Error e(n)
Cost
] = E[e*(n)]

= Optimal solution is least squares w* = R~ !p, but now R is the
autocorrelation of the data input (over the lags), and p is the
crosscorrelation vector.
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On-Line Learning for Linear Filters

i

i
oL Transve?A filter w, y( )>
____»  Adaptive weight- )
control mechanism
+
d(i)

The current estimate W; is computed in
terms of the previous estimate, W, , , as:

W =W +Giei

Notation:

w; weight estimate at time |
(vector) (dim =)

u; input at time i (vector)

e(i) estimation error at time i
(scalar)

d(i) desired response at time |
(scalar)

e, estimation error at iteration |
(vector)

d; desired response at iteration
| (vector)

G, capital letter matrix

e; Is the model prediction error arising from the use of w,_; and G; is a

Gain term




On-Line Learning for Linear Filters

i« Easiest technique is to search the performance surface J using

gradient descent learning (batch). ] <> Contow
Wi =W, —17VJ; W, =W —7H VI, 4 2:
limE[w; ] =w* Ay
' 15
J =E[e*(i)] |
n  stepsize O'Z

-1 -0.5 0 0.5 1 15

% (Gradient descent learning has well known compromises:
+ Stepsize n must be smaller than 1/4,,,. (of R) for convergence
+ Speed of adaptation is controlled by A,,,;,

¢ So eigenvalue spread of signal autocorrelation matrix controls speed of

adaptation

+ The misadjustment (penalty w.r.t. optimum error) is proportional to
stepsize, so fundamental compromise between adapting fast, and small

misadjustment.




On-Line Learning for Linear Filters

* Gradient descent learning for linear mappers has also great
properties

+ It accepts an unbiased sample by sample estimator that is easy to
compute (O(L)), leading to the famous LMS algorithm.

W, =Wy + (i)

¢ The LMS is a robust estimator ( H* ) algorithm.

+ For small stepsizes, the visited points during adaptation always
belong to the input data manifold (dimension L), since algorithm
always move in the opposite direction of the gradient.



On-Line Learning for Non-Linear Filters?

»% Can we generalize W, =W, , +G,&, to nonlinear models?

and create incrementally the nonlinear mapping?

[ fi — fi_1+Giei }

JOR

o) v

» Adaptive weight-
control mechanism

S
d(i)
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Non-Linear Methods - Traditional
(Fixed topologies)

* Hammerstein and Wiener models
+ An explicit nonlinearity followed (preceded) by a linear filter
+ Nonlinearity is problem dependent
+ Do not possess universal approximation property
% Multi-layer perceptrons (MLPs) with back-propagation
+ Non-convex optimization
+ Local minima
% Least-mean-square for radial basis function (RBF) networks
+ Non-convex optimization for adjustment of centers
+ Local minima

#* Volterra models, Recurrent Networks, etc



Non-linear Methods with kernels
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Universal approximation property (kernel dependent)
Convex optimization (no local minima)

Still easy to compute (kernel trick)

But require regularization

Sequential (On-line) Learning with Kernels

(Platt 1991) Resource-allocating networks
+ Heuristic
+ No convergence and well-posedness analysis
(Frieb 1999) Kernel adaline
+ Formulated in a batch mode
+ well-posedness not guaranteed
(Kivinen 2004) Regularized kernel LMS
+ with explicit regularization
+ Solution is usually biased
(Engel 2004) Kernel Recursive Least-Squares

(Vaerenbergh 2006) Sliding-window kernel recursive least-squares



Neural Networks versus Kernel Filters

ANNSs Kernel filters
Universal Approximators YES YES
Convex Optimization NO YES
Model Topology grows with data NO YES
Require Explicit Regularization NO YES/NO (KLMS)
Online Learning YES YES
Computational Complexity LOW MEDIUM

ANNSs are semi-parametric, nonlinear approximators
Kernel filters are non-parametric, nonlinear approximators




Kernel Methods
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Kernel filters operate in a very special Hilbert space of
functions called a Reproducing Kernel Hilbert Space (RKHS).

A RKHS is an Hilbert space where all function evaluations are
finite
Operating with functions seems complicated and it is! But it

becomes much easier in RKHS Iif we restrict the computation
to inner products.

Most linear algorithms can be expressed as inner products.
Remember the FIR

y(n) = Y wix(n—i) = (wx(n))
=0



Kernel methods

* Moore-Aronszajn theorem

+ Every symmetric positive definite function of two real variables has
a unique Reproducing Kernel Hilbert Space (RKHS).

k(x, y) = exp(=h|x—y[")
# Mercer’s theorem

+ Let K(x,y) be symmetric positive definite. The kernel can be
expanded in the series

K(x,y) =2 4o (e, (y)
+ Construct the transform as o

P(X) = [\ A4@, (X, {2 25 (X); o0 Ay 00 OO

+ Inner product

{(o0(0):0(y)) =x(x.y))




Kernel methods




Basic idea of on-line kernel filtering

Ax

Transform data into a high dimensional feature space ¢. := ¢(U.)
Construct a linear model in the feature space F

y= <Q1 (D(U» F

Adapt iteratively parameters with gradient information

Ax

Ax

Compute the output

m;
fi(U) =(Q, pU))e = 2 a;x(U,c;)
Universal approximation theorem =1

+ For the Gaussian kernel and a sufficient large m;, f(u) can
approximate any continuous input-output mapping arbitrarily close in
the L, norm.

Ax

Ax
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Kernel Least-Mean-Square (KLMS)

% Least-mean-square

w =w g +nue() e =d@i)-wu  w

# Transform data into a high dimensional feature space F @ = @(U.)

Q, =0

: ; Q, =0
e(l) =d (1) — (€, €0(_Ui)>F o) = d (1) - (. p(u)r =d()
Q =Q. . +ne(u)e() Q, =Q, +n9(u)e) = ap(u,)
i e(2) =d(2) —(Q,, 0(u,))¢
Q = Zﬂe(j)¢(uj) =d(2) —(ap(u,), p(u,))e
j=1 :

; =d(2) -ax(u,u,)
f(U) =(Q, o)) = > me(j)rc(u,u,) | C2=A+ne:)e?)
j=1 =a,p(u,) +a,p(u,)
#* RBF Centers are the samples, and Weights-are the errors!




Kernel Least-Mean-Square (KLMS)

fra =73 e(K(u(i).)

fia(uh)) = nie(J)K(U(D, u(i))
e() =d(1) - 1, (u())

f; = 1, +ne()x(u(l),.)



Free Parameters in KLMS
Step size

» Traditional wisdom in LMS still applies here.

< A = L
r[G,1 3 xu(i).u(i)

Ji

where G, Is the Gram matrix, and N its dimensionality.

» For translation invariant kernels, k(u(j),u(j))=go, Is a
constant independent of the data.

# The Misadjustment is therefore @~ M =%tr[G¢,]




Free Parameters in KLMS
Rule of Thumb for h

* Although KLMS is not kernel density estimation,
these rules of thumb still provide a starting point.

» Silverman’s rule can be applied
h=1.06 min{o, R/1.34}N 6}
where o is the input data s.d., R is the interquartile, N
IS the number of samples and L is the dimension.

» Alternatively: take a look at the dynamic range of the
data, assume it uniformly distributed and select h to
put 10 samples in 3 o.




Free Parameters in KLMS
Kernel Design

» The Kernel defines the inner product in RKHS

+ Any positive definite function (Gaussian,
polynomial, Laplacian, etc.), but we should choose
a kernel that yields a class of functions that allows
universal approximation.

+ A strictly positive definite function is preferred
because it will yield universal mappers (Gaussian,
Laplacian).

See Sriperumbudur et al, On the Relation Between Universality, Characteristic Kernels and RKHS Embedding of
Measures, AISTATS 2010




Free Parameters in KLMS
Kernel Design

* Estimate and minimize the generalization error, e.g.
cross validation

» Establish and minimize a generalization error upper
bound, e.g. VC dimension

» Estimate and maximize the posterior probability of
the model given the data using Bayesian inference




Free Parameters in KLMS
Bayesian model selection

% The posterior probability of a Model H (kernel and
parameters 0) given the data is

|d,U) 1 p(d | U’ H|)p(H|)

H.
L p(d[U)

where d is the desired output and U is the input vector.

This is hardly ever done for the kernel function, but it
can be applied to 6 and leads to Bayesian principles
to adapt the kernel parameters.



Free Parameters in KLMS
Maximal marginal likelihood

# For each possible kernel, we maximize the following
objective function with respective to 0

J(H)=max-1/2d" (G +o;1)"d ~1/210g|G + 71|~ N/2log(27)]

where G is the Gram matrix.

Then H® which maximizes J(H) is the optimal kernel
with the corresponding 6° from the optimization itself.




Sparsification

* Filter size increases linearly with samples!

* |f RKHS Is compact and the environment stationary,
we see that there is no need to keep increasing the
filter size.

* |ssue is that we would like to implement it on-line!

» Two ways to cope with growth:
+ Novelty Criterion
+ Approximate Linear Dependency

% First is very simple and intuitive to implement.




Sparsification

Novelty Criterion

.
FL

Present dictionary is C(i) = {C,- }rj”i:l . When a new data
pair arrives (u(i+1),d(i+1)).
First compute the distance to the present dictionary

L
MK

ms=m@wG+n—qH
If smaller than threshold 81 do not create new center

Otherwise see If the prediction error Is larger than o2
to augment the dictionary.

01 ~ 0.1 kernel size and 62 ~ sgrt of MSE
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Sparsification

Approximate Linear Dependency

* Engel proposed to estimate the distance to the linear
span of the centers, I.e. compute

dis = min go(u(i+1))—zcjecbjgo(cj)
Which can be estimated by
dis® = x(u(i +1),u(i +1))—h(i+D" ' G*(i)h(i +1)
Only increase dictionary if dis larger than threshold
% Complexity is O(m?)
» Easy to estimate in KRLS (dis~r(i+1))

% Can simplify the sum to the nearest center, and it
defaults to NC

dis = min

vb,CjeC

(Ui +1)-o(c))|




KLMS- Mackey-Glass Prediction

x(t) =—0.1x(t) + L ?O =30
1+ X(t—17)
0.12 .
—LMS
01 - = =KLMS ||
0.08 LMS
§ 0.06 =R
KLMS

o a=1, n=0.2
0.02f RV AR P

OO 160 260 360 460 500

iteration
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Performance Growth tradeoff

—KLMS

== =KLMS-NC

0,=0.1, 6,=0.05
n=0.1, a=1

testing MSE

10 °f

600

' ' ' ' — growth curve ,
0 200 400 600 800 1000 ; ; : :
iteration 500 e S e 7

a0 G —_—

T R VA .

network size

200/ e

ool T T I

2000 3000 4000 5000
iteration

0 i
0 1000




KLMS- Nonlinear channel equalization

fi(u) =<, p(U))e = > ne(j)x(u,u;)

=1

A

r=z-09z°+n >

2,=5 +05s

m— MSE LMS
===MSE KLMS ||

.H“ w"‘ﬁn’i’“\-\'u.,

G o=t 0 200 400 600 800 1000
mi I lteration (sample)




Nonlinear channel equalization

. : \ KLMS (n=0.1) RN

SRR Linear LMS (0=0.003) | 5 reGULARIZATION) | (REGULARIZED 2=1)

BER (6 = .1) 0.162+0.014 0.0204+0.012 0.008 +0.001

BER (o = .4) 0.177+0.012 0.058+0.008 0.046+0.003

BER (o = .8) 0.218+0.012 0.130+0.010 0.118+0.004
K(ui'uj) =exp(-0.1]| y, —U; 1)

Algorithms Linear LMS KLMS RN
Computation (training) Oo(l) O(i) O(i®)
Memory (training) Oo(l) O(i) O(i?)
Computation (test) o(l) O(i) O(i)
Memory (test) o(l) O(i) O(i)

Why don’t we need to explicitly regularize the KLMS?




Self-regularization property of KLMS

= Assume the data model d(i)=Q"(¢)+V(i) then for any
unknown vector QQ° the following inequality holds

> le(i)-v(iF
QeI+ v P

As long as the matrix {1 —g(i)e(i)'} IS positive definite. So
+ H” robustness

IEIF<n 19Q° | +2|IV I
+ And€2(n)is upper bounded
12 IP<on(IQ° IF +27[IVIF)  oustetases

eigenvalue of Go

<1 foralli=12,.. N

The solution norm of KLMS is always upper bounded I.e.
the algorithm is well posed in the sense of Hadamard.




Regularization Techniques

» Learning from finite data is ill-posed and a priori
Information to enforce Smoothness is needed.
Norm

» The key Is to constrain the solution norm constraint
+ In Least Squares constraining the norm yields \/

J(Q)=— Z(d(l) Q' ¢ )?, subject to || Q||°< C

+ In Baye5|an modellng the norm is the prior. (Gaussian process)
Gaussian

J (Q) = N Zl(d (I) —QT ¢|) + A ” Q) ”i distributed prior

+ In statistical Iearﬁing theory, the norm is associated with the
model capacity and hence the confidence of uniform
convergence! (VC dimension and structural risk minimization)




Tikhonov Regularization

* In numerical analysis the method is to constrain the condition
number of the solution matrix (or its eigenvalues)

* The singular value decomposition of @ can be written

o-p|> Jlor S=diagfs 5,5}~

0O O Singular value

% The pseudo inverse to estimate Q in d(i) = (i)' Q° +v(i) is

Q,, =Pdiag[s;",...,s.%,0...0]Q'd
which can be still ill-posed (very small sr). Tikhonov regularized the
least square solution to penalize the solution norm to yield

J(Q) =[d-@'Q+ 2
> > —.0...,00Q¢

Q = Pdia
g(sf +A4 .87

Notice that if A = 0, when s, is very small, s/(s,>+ A) = 1/s, — «.
However if A > 0, when s, is very small, s/(s;>+ N) =s/ A - 0.




Tikhonov and KLMS

For finite data and using small stepsize theory:
Denote ¢ =g@(u.)eR" 1l N T
R, —W;(pigoi R, = PAP

Assume the correlation matrix is singular, and
1226 >Gg==6,=0
From LMS it is known that
El, ()] = (L-75,)'£,(0)

£l &, (n) 1] = 2’7_"7+ (—76,)" (&, (M) —2’7_3—;2)

Define Q(i)—Q°=>"" &,(i)P, sO
E[Q[] =0+ > (L-n5)'s;(0P; = > [1-(1-n5)' 1P, Q0)=0 &,(0)=-0
j=1 j=1

and HE[Q(i)]Hz 2 i(d})z X HQOHZ n<llc.,,
j=1

Liu W., Pokarel P., Principe J., “The Kernel LMS Algorithm”, IEEE Trans. Signal Processing, Vol 56, # 2, 543 — 554, 2008.




Tikhonov and KLMS

* In the worst case, substitute the optimal weight by the pseudo inverse
E[Q()] = Pdiag[(L— 1-7¢))s; ... A— L-715,)")s, ", 0...0]Q"d

* Regularization function for finite N in KLMS cg_iﬂ |
5 N 1 <ol i ; ; ;
[1-@-ns. /N)"]s,
* No regularization Sm_1 cz
% Tikhonov I
[s,2 /(s,” + )]s, —
x PCA Nk 0.8 :
s, If s, >th S0 |
- S 1
0 ifs <th 04 ll' /
The stepsize and N control the reg-function in 02y =/ —KLMS
KLMS 0 o === Tikhonov
' o = ==Truncated SVD |

0 0.5 1 15 2
ar value

et S
Li%t W., Principe J. The Well-posedness Analysis of the Kernel Adaline, Proc WCCI, Hong-Kong, &Q)%



The minimum norm initialization for KLMS

# The initialization €2, =0 gives the minimum possible
norm solution.

14 m o)
QI e n:]_Cn Pn
4
SRR A 3.
Clios N S m 0 2
K m 1= :
1 F=2 e IF+2 el ~

Liu W., Pokarel P., Principe J., “The Kernel LMS Algorithm”, IEEE Trans. Signal Processing, Vol 56, # 2, 543 — 554, 2008.




KLMS and the Data Space

% KLMS search is insensitive to the O-eigenvalue directions
E[gn (I)] = (1_77§n)| &y (O)
77‘]min i 77‘Jmin
E[l & (n) [']= +(L-15,)" (| & (M) [* — )
2-1¢ 2-11g,

n

Soif ¢, =0, Els,()]=£,0) and E[z,@)1=|z,0)
» The 0-eigenvalue directions do not affect the MSE

J()=E[ld-Q o]

- ‘]min m m ‘]min i
J(n)=Jmm+’72 nzlgn+znzlgn(|en(0)|2—"2 YL-7¢,)?

KLMS only finds solutions on the data subspace! It does
not care about the null space!

Liu W., Pokarel P., Principe J., “The Kernel LMS Algorithm”, IEEE Trans. Signal Processing, Vol 56, # 2, 543 — 554, 2008.




Energy Conservation Relation

he fundamental energy conservation relation holds in RKHS!

Energy conservation in RKHS

b

e e e
x(u(i),u(i)) x(u(i),u(i))
* Upper bound on step size for mean square convergence
! 0012~ L L | 1
2E U IJ ,
< The : '
E |:‘ Fj| + GV Lu 0.008
% 0.006-
* Steady-state mean square performance |
Ilm E e (1 vy ® simulation
Sk I: ( ):| 2 = 77 f 0r2 Or4 Or6 _thz?;y 1
' : stepsizén :

Chen B., Zhao S., Zhu P., Principe J. Mean Square Convergence Analysis of the Kernel Least Mean Square Algorithm,
submitted to IEEE Trans. Signal Processing




Effects of Kernel Size

0.8 x 10
R 8l ® simulation H
0.7 _ == theory
- \. 7 L
0.6} [HEsi
6 L.
0.5
LL 5
L o4 “é
w = 4 ]
0.3f 2o g oo vt oo v v v?
3r i
0.2
2 L.
0.1
1 L
00 260 460 660 860 1000 0 . . :
iteration i & e .
kernel size o

»Kernel size affects the convergence speed! (How to choose a
suitable kernel size is still an open problem)

% However, it does not affect the final misadjustment! (universal
approximation with infinite samples)
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The big picture for gradient based learning

[ Kiinen |

2004

Frieb . 1999 ’

: Engel, 2004
i We have kernelized ‘ ‘ J
versions of all

The EXT RLS Is a
model with states RLS RLS

Liu W., Principe J., “Kernel Affine Projection Algorithms”, European J. of Signal Processing, ID 784292, 2008.




Affine projection algorithms

'
AK

Solve min J(w)=E|d -w'u/ whichyields w°=Rr,

There are several ways to approximate this solution iteratively
using
+ Gradient Descent Method
w(0)  w(i)=w(i—1)+7r, - Rw(i—1)]

+ Newton’s recursion

w0)  w(i)=w(i-1)+n(R,+&) [y, - Rw(i —1)]
LMS uses a stochastic gradient that approximates
R, =u(@u@’  f, =d(iu)

Affine projection algorithms (APA) utilize better approximations

Therefore APA is a family of online gradient based algorithms of
Intermediate complexity between the LMS and RLS.



Affine projection algorithms

% APA are of the general form

UG) =[ui—K +2),....uid].«  d@)=[d@i-K+1),.,d@]

N R RER
Ru :EU(I)U(I) Fou = K U(I)d(l)

Gradient  w(0)  w(i)=w(i—1)+7U@)[d(i)-U(G)" w(i-1)]

Newton
w(i) =w(i —1) + 7(UUG)" +&)U@[d@) - U@) w(i—1)]
= Notice that
(UGHUG)" +) U@ = U@ UE) U@ +4)™

So

w(i) =w(i —1) +7U@[UG)" UG) + ] d(i) - UGi) wii —1)]




Affine projection algorithms
% |If a regularized cost function is preferred

min J(w) = E‘d —WTU‘Z +/1HWH2

* The gradient method becomes

w(O)  w(i)=1-nAw(i -1)+rUD[d() - V@) w(i—D)]
Newton
w(i) = (1—-n)w(i —1) +n(UGE)U3I)" + &) U@)d(i)
= Or

w(i) = A—nA)w(i —1) +7U®)[UG)" UG) + &l d(i)




Kernel Affine Projection Algorithms

Algorithm Update equation
KAPA-1  w(i) =w(i—1)+n®(i)[d(i) — ®(i)Tw(i —1)]

KAPA-2  w(i) =w(i—1)+n® ()@ &)+ X7 Hd (i) — (i) w(i—1)]
KAPA-3  w(i) = (1 = \)w(i—1)+nP(i)[d(i) — ®(i)Tw(i —1)]
KAPA-4 wl(i) = (1 —n)w(i— 1)+ nd(7) [fI‘(J}T‘I‘{Jj + A1) (i)

D) =[p(i — K +1)....,00)] Q(I) -

KAPA 1,2 use the least squares cost, while KAPA 3,4 are regularized
KAPA 1,3 use gradient descent and KAPA 2,4 use Newton update

Note that KAPA 4 does not require the calculation of the error by
rewriting the error with the matrix inversion lemma and using the
kernel trick

Note that one does not have access to the weights, so need recursion
as in KLMS.

Care must be taken to minimize computations.




KAPA-1

Cri < U
a‘mi <5 779i (I)

g < 8y 178 (1-1)

mi—1

Ak € A 76 (1-K +1)




KAPA-1

f=f 4 e Dr(u(i).)

j=1-K+1

a; (1) =ne(i;1)
a;(=a;(1-1)+ne;])) J=1-K+1...,
a;()=a;(-1) ]=1...,1-K
i C()=1C(-1),u()}




Error reusing to save computation

#* For KAPA-1, KAPA-2, and KAPA-3
#* To calculate K errors is expensive (kernel evaluations)

e()=dK)—p Q. ,,(i—-K+1<k <i)

% K times computations? No, save previous errors and use them
€., (k) =d(k) - §9kTQi =d(k) - @kT (€, +nD;€;)
=(d(K)-o Q) +ne D

Still needs ¢, (i +1)

S T
S ei (k) + nwk CI)i ei which requires i kernel evals,
[ So O(i+K?)

e ()+ Y ne(i)ae;

J=1-K+1



KAPA-4

KAPA-4: Smoothed Newton’s method.

-k
AK

D =0, P s Pl
d. =[d(i),d(i-1),...,d(1—-K +1)]

There is no need to compute the error

w(i) = L-nA)w(i —1) + @) [@)" ©(i) + Al]d(i)

k4
AK

The topology can still be put in the same RBF framework.

Efficient ways to compute the inverse are necessary. The sliding
window computation yields a complexity of O(K?)

-k
A

k4
A




KAPA-4

a, (i) = nd (i) k=i
a (i)=A-ma,(i-D+nd(k) i-K+l<k<i-1
a, (i) = @-n)a, (i-1) 1<k<i—K+1

d(i) = (G(i) + A1) d(i)

2
* How to invert the K-by-K matrix (5| + O, (Di) and avoid O(K3)?




Sliding window Gram matrix inversion

D, =[@, @ 11 Bia] Gr. =@, O,

ke chi D h
G.ri + 1] = a b Sliding window Gri+1 + 1| = i
b D] = h g

il T
(Gr + A1) = L

DloH oY fe-

s=(g—h'"D*h)™" Schur complement of D

D1 +(D*h)Y(D?h)'s —(D*th)s

Gr.+A1)" =
( 1+1 ) —(D_lh)TS S

Complexity is K?



Relations to other methods

Algorithm Update equation Relation to KAPA

KLMS w(i) =w(i— 1) +np(i)d(i) — o(i) T w(i— 1)] KAPA-1, K =1

NKLMS w(i)=w(—1)+ jﬁ” [d(i) — (i) w(i —1)] KAPA-2, K =1

Norma w(i) = (1L —nyNwl(i — 1) 4+ np(i)[d(i) — ;{?T]Tw(-i —1)] KAPA-3, K =1

Kemel Adaline w(i) =w(i—1)+nP[d — dlw(i—1) KAPA-1, K =N
RA-RBF w(i) =nd[d - ST w(i — 1)] KAPA-3, nA=1, K =N
SW-KRLS w(i) = ®)[®(H)T®(i) + A]~1d(4) KAPA-4, ) = 1

RegNet w(i) = ®[®TP + A1]71d KAPA-4, =1, K =N




Recursive Least-Squares

* The RLS algorithm estimates a weight vector w(i-1) by
minimizing the cost function

-1 2
min jd(i)-u(j)'w
=1
# The solution becomejs

w(i—1) = (Ui ~DUG —1D)7) U@ —1)d(i —1)

And can be recursively computed as
P@i—-Du(i)
1+u(i)" P(i —Du(i)

Where P(i) =(U@)U(@)' )™ . Start with zero weights and P() ="

w(i) = w(i—1) + [d (i) —u(i) w(i —1)]

r(i) =1+u(i) P —1)u(i) w(i) = w(i —1) + k(i)e(i)
k(i) = P(i —D)u(i)/r(i) P@i) =[P(>i—1) —k(i)k (@) r(i)]
e(i) = d (i) —u(i) w(i-1)



Kernel Recursive Least-Squares

* The KRLS algorithm estimates a weight function w(i) by minimizing
i—1 2
miny |d(j)-w'e(j) + 2w
j=1
+ The solution in RKHS becomes

w(i) = o)Al + @) @@)] "di) =@@)ai)  ali) = Q(i)d(i)

Q' (i) can be computed recursively as

L Q=D h(i) : RN
Ql(l){ : : } h(i) =®(i-1) ¢()
h(i)'  A+e(i) o)
From this we can also recursively compute Q(i)
3 -{Q(i—l)r(i)ﬂ(i)TZ(i) -z(1) z(1) = Q(I=Dh(i)
Q) =r(i) i : A RE
-z(1) 1 r(i)=A+«(u(),u)—z(@) h(i)

And compose back a(i) recursively
ai) = {a(') : i('.)rl.(')e(')} e(i) = d (i) — h(i)a(i ~1)
r(i)e(i)
with initial conditions
QW) =[A+x(ul),u®H]”,  a@)=Q@d




KRLS

Cri <= U;

a_ < r(i)e(i)

&y < ay_; — (i) "e(i)z; (i)

‘ﬂ f.(u) = ZI_: a()x(u(]),u)

Engel Y., Mannor S., Meir R. “The kernel recursive least square algorithm”, IEEE Trans. Signal
Processing, 52 (8), 2275-2285, 2004.




KRLS

f = Ty 1) 2eu@)) - X2, (i) b

a, (i) = r(i) e(i)
a,(i)=a@)-r@) ez, (i) j=1..i-1
C()={C>-1),u(i)}




Regularization

* The well-posedness discussion for the KLMS hold for

any other gradient decent methods like KAPA-1 and
KAPA-3

* |f Newton method is used, additional regularization is
needed to invert the Hessian matrix like in KAPA-2
and normalized KLMS

* Recursive least squares embed the regularization in
the initialization




Computation complexity

Algorithm Computation Memory

LMS O(L) O(L)
KLMS O(i) O(i }
SW-KRLS O(K?) O(K
KAPA-L  Oti+ K7 O “‘ Prediction of Mackey-Glass
KAPA-2 O(i + K?) O(i + K?)
KAPA-4  O(K?) (){; +I )
KRLS O(i?) O(i 10" —
— KL MS-1 ]
KAPA-1 ||
- m— KAPA-2 ||
.i. = m = SW-KRLS |
H
L=10 8 107 &
K=10 '
K=50 SW KRLS
10_30 1E;)O 260 3C;)0 4(;)0 500

iteration




Simulation 1: noise cancellation
n(i) ~ uniform [-0.5, 05]

Primary signal

bs@

Noise source

(0} / 1

Interference u(il Adapt \74@ (i) o

distortion function H RN
_/ e(i) |
. Adaptive weight-

control mechanism

u(i) = ni) = 0.2u(i =) —u(i ~)n(i =1) +0.1n(i —1) + 0.4u(i —2)
= H(n(i),n(i ~1),u(i -1), u(i —2))




Simulation 1: Noise Cancellation

0.1

5 ; . | =——NLMS
L ; ; .| m—SKLMS-1
0.085 - S ETRE e . SKAPA-2 1

006k - .............. .............. .............. ..............

MSE

0.0all ... S S S N

0.02Hk e AR e e

460 600 800 1000
iteration

Algorithm Network Size NR(dB)

NLMS N/A 9.0040.45 : . . \

SKLMS-1 407414 15580048 KU(D),u(])) =exp(=|fu() —u(J) 1)

SKAPA-2 370+14 21.99£0.80

0 200

K=10



Simulation 1:Noise Cancellation

0'8 : | — Noisy Observation ;-
v
05 WW WYV
'1 - r r [ r T
2500 2520 2540 2560 2580 2600
0.5 E_ L L L L ]
) NLMS
05" 1
o 2500 2520 2540 2560 2580 2600
3 [ L L L L 5
§0-5 \ —— KLMS-1
0 V .
<
-0'5 L [ [ [ [ V V N
2500 2520 2540 2560 2580 2600
0.5 F__ L L L L L
KAPA-2
0 N
-05 r r r r t
2500 2520 2540 2560 2580 2600



Simulation-2: nonlinear channel equalization

== 2,=5+0058 , — =z-092"+n, —+

LMS1
: : : v m A FPA

DBF------ s e e e S S L
: : : SKAPAT

—— SKAPA2 K=10

MSE

0 i | i i
0 2000 A000 G000 8000 10000
iteration




Simulation-2: nonlinear channel equalization

2 I
: LMS1
"]B_ .......................................................... ' ........ 1 IIIIIIAPJA-“I
— SKLMST
A B e ........ SKAPA1 M

MSE

I l
0 500 1000 1500
iteration

Nonlinearity changed (inverted signs)



Gaussian Processes

* A Gaussian process is a stochastic process (a family of random
variables) where all the pairwise correlations are Gaussian

distributed. The family however is not necessarily over time (as in
time series).

* For instance in regression, if we denote the output of a learning

system by y(i) given the input u(i) for every i, the conditional
probability

p(Y(D),.-.y(n) [u),...,.u(n) =N(0, o1 +G(i))
Where o Is the observation Gaussian noise and G(i) is the Gram
matrix v 2
x(u@),u@) - xu@)u))
G(l) =

wu(),u@) - wu),ui))

and « Is the covariance function (symmetric and positive definite). Just
like the Gaussian kernel used in KLMS.

Gaussian processes can be used with advantage in Bayesian
inference.




Gaussian Processes and Recursive
Least-Squares

* The standard linear regression model with Gaussian noise is
f(uy=u'w ,d=fu)+v

where the noise is IID, zero mean and variance ¢’

* The likelihood of the observations given the input and weight vector

pd(@)|U(1),w) = H p(d(j) [u(j),w) =N(U(@i)"w, o71)

* To compute the posterijcﬁ over the weight vector we need to specify
the prior, here a Gaussian and use Bayes rule
p(d(i) [U(), w) p(w)

p(w) =N(0,0,1) p(w|U(1),d(1)) = 5(d() | UG))

Since the denominator is a constant, the posterior is shaped by the
numerator, and it is approximately given by

p(w|U,d) o exp{—%(w—w(i))T (% U@u(@)' +o’l j(W_W(i))}

n

with meanw(i) = (U)UG)" +o2c?l) U(i)d(i) and covariance(%z VORION +GJ‘;I}
Therefore, RLS computes the posterior in a Gaussian process one
sample at a time.




KRLS and Nonlinear Regression

* It easy to demonstrate that KRLS does in fact estimate online
nonlinear regression with a Gaussian noise model i.e.

f(U=pu)'w ,d=fU)+v
where the noise is 11D, zero mean and variance ¢’
* By a similar derivation we can say that the mean and variance are

»* Although the weight function is not accessible we can create
predictions at any point in the space by the KRLS as

E[f (u)]=g(u)’ CI>(i)(<I>(i)<I>(i)T +0,0,| )_1d(i)
with variance

o (f () = olp(u)’ p(u) - o2p(u) @H@HPI) +oi0ll ) O i) pu)
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Extended Recursive Least-Squares

% STATE model
X1 = FX +n,

d=U'x+v
+ Start with
)
Woj-1: I:)0|—1 =11

+ Special cases
» Tracking model (F is a time varying scalar)

X, =ax +n,d@i)=u'x +v(i)
* Exponentially weighted RLS

X =X, d(i) =u"x +v(i)
« standard RLS

Xiq =%, d(i) =u" x +v(i)

—+

Notations:
X; State vector at
time i

wj;., State estimate
at time i using
data up to i-1




Recursive equations

*The recursive update equations

Worr = 0, I:)0|—1 = ﬁ_lﬂ_ll

Conversion factor

r(1) = A+ uj Biali —

kp’i R re (I) % gain factor

S : %‘} error
E(I) X2 (I) L“Ii \Nili—1 Z weight update
Wi+1|i

Pi+1|i = o |2 [Pili—l 3% ID‘li—luiuiT I:)ili—l / e 1+ /qu

= oW, +K;e(l)

* Notice that
T A T A T - :
U W, =au W, +ou B, ue()/r,(i)

If we have transformed data, how to calculate o(u, )" P, ,o(u;) foranyk, i, j?




New Extended Recursive Least-squares

T -
«Theorem1: N =Pl =Hj.Q;,H; 4, V)

where p;is a scalar, Hi:=[...u,l' and Qj.is a jxj matrix, for all j.
*Proof:

I:)0|—1 3 /1_1/8_11’ P = ﬁ_lﬁ_l’ Q,=0

P.uu'P. : By mathematical
2 of ) y ica
Pi+1|i = a | [Pi|i—1 —— : 2 ]+4'ql induction!

e

=al [, — HiT—lQi—lHi—l X
(Pi_1 % HiT—lQi—lHi—l)uiuiT (pi—l = HiT—lQi—lHi—l)
r.(1)

= (| |2 pi—1+ﬂ’iq)l_|a |2 HiT [

1+ A'ql

H.

Q.+ fi—l,i fi—l,iT re_l (1) -p, fi—l,i re_l (1)
—Pia 1:i—l,iT re_l(i) /02i—1re_1 (I)




New Extended Recursive Least-squares

51 T :
#*Theorem 2: J|J -1 5% H VJ
where H. . =[u.,...,u. and a;,.1 IS a j=1 vector, for all j.
j-1 0 -1

#*Proof:;

N

Wo, =0, a,,=0
By mathematical

\f\/i+1|i — a\fvi“_l +k .e(i) induction again!
=aH 8, , +aP_ue)/r()
= azHiT_lai“_1 +a(p_J-H',Q H._)ue()/r()
= aH 2, , +ap uel) /() -aHT, f  e) /1. ()
Wi (aa”il ~a fil’ie(i)rel(i)j
! ap._e(i)r. (i)



Extended RLS
Wy =0,Ry, =4"B71

New Equations
Ay g = 0,0, = l_llg_l’Q—l =0

ki—l,i o5 uiT Hi—lT
= Qi—lki—l,i

r(1) = A+ UiT Rl

e

kos = aPyyu /1, (i)
e(l) d(l) U Iji-1

Wiy = oWy + K €(1)

I:)|+1|| _l 0{| [ ifi-1
Pli—luiui Pia /T, (i]+A'ql

SRR
-—|a|[

() =2"+p 0Ty -kl f

-1, “i1-1,i

e(l) d(l) kl —1,i ||| -1

ai+1|i oy a(aili = | 1,ile 1(i)e(i)j
IOI 1 (I)e(l)

o =lal p_+A'q

PR o ST
,0 1f —1,i Tr 1(') pzi—lre—l(i) Y,



An important theorem

* Assume a general » There exists a
nonlinear state-space transformed input
model vector p(u), a

transformed state
vector x(s)

s(i +1) = g(s(i)) X(s(1+1)) = Ax(s(i))

> : SRS :
d(i) = h(u(i),s(i)) +v(i) d(i) = @(u(i))” x(s(1)) +v(i)

o(u)' p(u') =x(u,u)



Extended Kernel Recursive Least-squares

ay,=0,0, = ﬂ“—lﬂ_liQ—1 =

*Initialize
ki_Li =[x (Uy,U.),....x(U,_,u)]
:QI 1k| -1,
r(l) ll_l_pl 1K(U|,U) I(|1| -1,
e(l) d(l) ku —1,i ||| Update on weights
5 :O{am SRR 1(i)e(i)j e
IOI 1 (I)e(l)

Update on P matrix

pi = a |2 Pi_1 +llq

o, [ Qi+ fiifig iT re_l(i) — P, 1 i 1|r_1(i)
Qi :I (04 | [ : T ’ ~1 =
—Pi1 fi—l,i re (I) i—1 e (I)




ExX-KRLS

Cri < U,

a, < ap, . ()e(i)

d <od, o fi—l,i (i)re_l(i)e(i)

mi—1

?

gga fias @r, " (De()
y

0
0
0
0
0
0
\\\\\\ am\*l ///,,
\\\\\\\ (] ///,/

‘ frrl f.(u) =(Q,,p)), = Za ic(u,u;)
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Simulation-3: Lorenz time series

prediction




Simulation-3: Lorenz time series
prediction (10 steps)

I:I._-

l i i i
200 400 600 200 1000
iteration




Simulation 4: Rayleigh channel tracking

dB

f,=100Hz, t=8x105s

A6k

{18 -.I.-III!' [ !

—LMS2

KRLS

~— ExKRLS |

ExXRLS |

|

14 [

100

_§.T._.>

400

5 tap Rayleigh multi- |

tanh

path fading channel
¢=0.005

1,000
symbols



Rayleigh channel tracking

: MSE (dB) (noise variance MSE (4B Ehoiss S
Algorithms 0.001 and .. = 50 Hz ) variance 0.01 and f =
: 2R 200 Hz)

e-NLMS -13.51 -9.39
RLS -14.25 -9.55
Extended RLS -14.26 -10.01
Kernel RLS -20.36 -12.74
Kernel extended RLS -20.69 -13.85

K(ui’uj) =exp(-0.1]| u, —U; ”2)




Computation complexity
Algorithms Ll_irl\‘jgr KLMS KAPA ex-KRLS
Computation (training) O(l) O(i) O(i+K?) O(i?)
Memory (training) o) O(i) O(i+K) O(i?d)
Computation (test) o) O(i) O(i) O(i)
Memory (test) o) O(i) O(i) O(i)

At time or iteration i
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adaptive filtering




Active data selection

Why?
+ Kernel trick may seem a “free lunch™!

+ The price we pay is memory and pointwise evaluations of
the function.

+ Generalization (Occam'’s razor)

A=

A=

But remember we are working on an on-line scenario,
so most of the methods out there need to be modified.




Active data selection

* The goal is to build a constant length (fixed budget)
filter in RKHS. There are two complementary
methods of achieving this goal:

+ Discard unimportant centers (pruning)
+ Accept only some of the new centers (sparsification)

* Apart from heuristics, in either case a methodology to
evaluate the importance of the centers for the overall
nonlinear function approximation is needed.

* Another requirement is that this evaluation should be
no more expensive computationally than the filter
adaptation.




Previous Approaches — Sparsification
» Novelty condition (Platt, 1991)

« Compute the distance to the current dictionary
dis = ergi)rgi)Hu(i +1) -]
« Ifitis less than a threshold 6, discard
* |If the prediction error
e(i +2) =d (i +1) — (i +1)" Q)

* Is larger than another threshold &, include new center.

= Approximate linear dependency (Engel, 2004)

« If the new input is a linear combination of the previous
centers discard : ;
dis, = mlanp(u(l +1) —cheD(i)bjgo(cj)

which is the Schur Complement of Gram matrix and fits KAPA 2
and 4 very well. Problem is computational complexity




Previous Approaches — Pruning
# Sliding Window (Vaerenbergh, 2010)

+ Impose mi<B In f =Za,-(i)r<(cj,-)
+ Create the Gram matrix of size B+1 recursively from size B

~ G- h = P
G(i+1):|:h(Tl) K‘(C X )} h [K(CB+1’Cl)’ ’K(CB+1’CB)]T

QM) = (A +G(i)* 2=Qli)h  r=2+x(Cou,Con)~2'h

<.~ |QM)+zz' Ir —z/r
Q(Hl)_{ —z"Ir 1/r}

+ Downsize: reorder centers and include last (see KAPA2)

Qi+)=H-ff'/e a(i+)=Q(@+Dd(@+1) f, :Zilaj (i+Dx(c;,.)
+ See also the Forgetron and the Projectron that provide
error bounds for the approximation.

O. Dekel, S. Shalev-Shwartz, and Y. Singer, “The Forgetron: A kernel-based perceptron on a fixed budget,” in Advances
in Neural Information Processing Systems 18. Cambridge, MA: MIT Press, 2006, pp. 1342-1372.

F. Orabona, J. Keshet, and B. Caputo, “Bounded kernel-based online learning,” Journal of Machine Learning Research,
vol. 10, pp. 2643-2666, 20009.




Problem statement

# The learning system  y(u;T(1))
+ Already processed (your dictionary)
D(i) ={u(j),d (i)}
* A new data pair {u(i+1),d(@i+1}
+ How much new information it contains?
+ Is this the right question?
Or

How much information it contains with respect to the
learning system y(u;T(i)) ?




Information measure

W
A

Hartley and Shannon’s definition of information
+ How much information it contains?

1(i+1) =—In p(u(i +1),d (i +1))

e |
AE

Learning is unlike digital communications:
The machine never knows the joint distribution!

When the same message is presented to a learning
system information (the degree of uncertainty)
changes because the system learned with the first
presentation!

Need to bring back MEANING into information theory!

W
MK

W
AE




Surprise as an information measure

% Learning is very much like an experiment that we do
In the laboratory.

»* Fedorov (1972) proposed to measure the importance
of an experiment as the Kulback Leibler distance
between the prior (the hypothesis we have) and the
posterior (the results after measurement).

% Mackay (1992) formulated this concept under a
Bayesian approach and it has become one of the key
concepts in active learning.




Surprise as an information measure

# Pfaffelhuber in 1972 formulated the concept of
subjective or redundant information for learning

SYstems as | (x) =—log(a(x))

the PDF of the data is p(x) and g(x) is the learner’s
subjective estimation of it.

% Palm in 1981 defined surprise (or conditional
information) for a learning system y(u;T (i))

2 SriyW(+1))=Cl(1+1) =—In p(u(i+2) [T (1))




Shannon versus Surprise

Shannon Surprise
(absolute (conditional
Information) iInformation)
Objective Subjective
Receptor Receptor
independent dependent (on time
and agent)
Message is Message has
meaningless meaning for the
agent




Evaluation of conditional information
(surprise)

»* (Gaussian process theory
Cl(i+1)=-In[p(u(i+1),d(i+1)|T(i))]=

@i+ —d(i+1)> ] :
22D In[p(u(i+2)|T(i))]

InvV27z +Ino(i+1)+

* where

d(i+2) =h(i+1)"[c21 + G(@i)]*d (i)
o?(i+1) =o? +xc(u(i+1),ui +1))—h(i +D" [l + G h(i +1)




Interpretation of conditional information
(surprise)
Cl(i+1) =—In[ p(u(i+1),d (i +1) | T (i))] =

(d@i+D)—d(i+1)>
2052 (i +1)

N2z +Ino(i+1) + —In[ p(u(i +1) | T (i))]

= Prediction error  e(i+1) =d(i+1)—d(i+1)
+ Large error - large conditional information
# Prediction variance o*(i +1)

+ Small error, large variance - large Cl
+ Large error, small variance - large CI (abnormal)

# Input distribution PUI+1)|T())
+ Rare occurrence - large ClI




Input distribution
pu(i+1)[T(1))
» Memoryless assumption
p(u@t+1)| T (1)) = p(u(i +1))
» Memoryless uniform assumption

p(u(i+1)|T (1)) =const.




Unknown desired signal

x Average Cl over the posterior distribution of the
output

Cl(i+D)=Ino(i+21)—In[ p(u@+1)|T(®))]

» Memoryless uniform assumption

Cl(i+)=Ino(i+1)

* This Is equivalent to approximate linear dependency!




Redundant, abnormal and learnable

Abnormal :  CI(1+1) >T,

Learnable : T,>ClI(1+1)>T,

Redundant: CI(1+1)<T,

» Still need to find a systematic way to select these
thresholds which are hyperparameters.




Active online GP regression (AOGR)

%  Compute conditional information

*  |If redundant
+ Throw away

»  If abnormal

+ Throw away (outlier examples)

+ Controlled gradient descent (non-stationary)
*  |f learnable

+ Kernel recursive least squares (stationary)
+ Extended KRLS (non-stationary)
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{Simulation-5: nonlinear regression—
{redundancy removal

Testing MSE

0.04

Cl Threshold (T1)

# centers
—
(]
o

Cl Threshold (T1)

T1 is wrong, should be T2
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| Simulation-S: nonlinear regression—

(e abnormality detection (15 outliers)
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Simulation-6: Mackey-Glass time series

prediction

Algorithm network size
RAN 365 £+ 13
SKLMS-1 205+ 11
AOGR 047

iteration

AOGR=KRLS




Simulation-7: CO2 concentration forecasting
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Quantized Kernel Least Mean Square

* A common drawback of sparsification methods: the
redundant input data are purely discarded!

»* Actually the redundant data are very useful and can
be, for example, utilized to update the coefficients of
the current network, although they are not so
Important for structure update (adding a new center).

% Quantization approach: the input space is quantized, if
the current quantized input has already been assigned
a center, we don't need to add a new, but update the
coefficient of that center with the new information!

* Intuitively, the coefficient update can enhance the
utilization efficiency of that center, and hence may
yield better accuracy and a more compact network.

Chen B., Zhao S., Zhu P., Principe J. Quantized Kernel Least Mean Square Algorithm, submitted to IEEE Trans. Neural
Networks




Quantized Kernel Least Mean Square

o0
e(t) =d(1) -, (u())
3 fi=1, +Ue(i)K(Q[U(i)]’ )

% Quantization in Input Space

N\

x Quantization in RKHS  [Q(0)=0
e(i) =d(i) -Q(i 1) o(i)

Q1) =Q(1-1) +77e(i)£?[go(i)]
* Using the quantization method to

compress the input (or feature) space

and hence to compact the RBF Ouantization operator
structure of the kernel adaptive filter

J\




Quantized Kernel Least Mean Square

* The key problem is the vector quantization (VQ):
Information Theory? Information Bottleneck? ......

* Most of the existing VQ algorithms, however, are not
suitable for online implementation because the codebook
must be supplied in advance (which is usually trained on
an offline data set), and the computational burden is
rather heavy.

% A simple online VQ method:

1. Compute the distance between u(i) and C(i-1)
dis(u(i),C(i-1)=_ min |u(i)-C;(i-1)|

1< j<size(C (i-1))

2. If dls(u(l) C(i-1))<e, keep the codebook unchanged, and quantize u(i) into
the closest code-vector by a.()=a.(i-1)+ne(i) i-= A Hu(n) -

ze(C(i-1))

3. Otherwise, update the codebook: C(i) ={C’(i—1),U(i)}, and quantlze u(i) as itself




Quantized Kernel Least Mean Square

% Quantized Energy Conservation Relation

60, +— 5 —jai-of =

(U, i), ()’ S (TRORYO))

* A Sufficient Condition for Mean Square Convergence

q

E[e, ()2 -1)7p,(i) |>0 (CD)
Vi, - N> -1 o (i
| O<T7£2E[ea(|)QF| 1) (Dq(l)] (©2)
L E|el(i)|+o7

% Steady-state Mean Square Performance

2_77 i—00 2_

max{”av —2¢, ,o} <limE[e2(i) | < 72 T,



Quantized Kernel Least Mean Square

* Static Function Estimation
d(i) = o.zx[exp(— (“(i);l)z ]+exp(— (“(i)z‘l)z H +v(i)

EMSE

10" -

'EMSE =0.0171

Upper bound

......

quantization factor y

final network size

40

30%

20

10

2 4 6
guantization factor y



Quantized Kernel Least Mean Square

» Short Term Lorenz Time Series Prediction
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Quantized Kernel Least Mean Square

» Short Term Lorenz Time Series Prediction

400 : 10" : ;
smmEn QKLMS lllll QKLMS E
350 NC-KLMS | —— NC-KLMS |
=== SC-KLMS ~==SCKLMS |
300 10° — KLMS
© 250 Py s =zaas )
N =1 w A
;) -‘-f /'-/} (é)
= 200 /‘P 10
s £
2 150 = 14 \.
100 1/ 10° S s (Y e i s
\ RV |
50 WA RV AL
SITAE o x
0 10” ki
0 1000 2000 3000 4000 " 0 1000 2000 3000 4000

iteration iteration




Redefinition of On-line Kernel Learning

* Notice how problem constraints affected the form of the
learning algorithms.

* On-line Learning: A process by which the free
parameters and the topology of a ‘learning system’ are
adapted through a process of stimulation by the
environment in which the system is embedded.

* Error-correction learning + memory-based learning

+ What an interesting (biological plausible?) combination.




Impacts on Machine Learning

% KAPA algorithms can be very useful in large scale
learning problems.

* Just sample randomly the data from the data base and
apply on-line learning algorithms

* There Is an extra optimization error associated with
these methods, but they can be easily fit to the machine
contraints (memory, FLOPS) or the processing time
constraints (best solution in x seconds).




Information Theoretic Learning (ITL)

Information Science'and Statistics

José C.Principe

This class of algorithms can
be extended to ITL cost
functions and also beyond
Regression (classification,
Clustering, ICA, etc). See

IEEE
SP MAGAZINE, Nov 2006

Or ITL resource
www.chel.ufl.edu




